Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

نویسندگان

  • Gang Niu
  • Hee-Dong Kim
  • Robin Roelofs
  • Eduardo Perez
  • Markus Andreas Schubert
  • Peter Zaumseil
  • Ioan Costina
  • Christian Wenger
چکیده

With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALD HfO2 Based RRAM with Ti Capping

HfOx based Resistive Random Access Memory (RRAM) is one of the most widely studied material stack due to its promising performances as an emerging memory technology. In this work, we systematically investigated the effect of metal capping layer by preparing sample devices with varying thickness of Ti cap and comparing their operating parameters with the help of an AgilentB1500A analyzer. Keywor...

متن کامل

High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition

We demonstrated a flexible resistive random access memory device through a low-temperature atomic layer deposition process. The device is composed of an HfO2/Al2O3-based functional stack on an indium tin oxide-coated polyethylene terephthalate substrate. After the initial reset operation, the device exhibits a typical bipolar, reliable, and reproducible resistive switching behavior. After a 104...

متن کامل

Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications

We have demonstrated a flexible resistive random access memory unit with trilayer structure by atomic layer deposition (ALD). The device unit is composed of Al2O3/HfO2/Al2O3-based functional stacks on TiN-coated Si substrate. The cross-sectional HRTEM image and XPS depth profile of Al2O3/HfO2/Al2O3 on TiN-coated Si confirm the existence of interfacial layers between trilayer structures of Al2O3...

متن کامل

Bipolar Resistive Switching Characteristics of HfO2/TiO2/HfO2 Trilayer-Structure RRAM Devices on Pt and TiN-Coated Substrates Fabricated by Atomic Layer Deposition

The HfO2/TiO2/HfO2 trilayer-structure resistive random access memory (RRAM) devices have been fabricated on Pt- and TiN-coated Si substrates with Pt top electrodes by atomic layer deposition (ALD). The effect of the bottom electrodes of Pt and TiN on the resistive switching properties of trilayer-structure units has been investigated. Both Pt/HfO2/TiO2/HfO2/Pt and Pt/HfO2/TiO2/HfO2/TiN exhibit ...

متن کامل

Improved Uniformity of Resistive Switching Characteristics in Ag/HfO2/Pt ReRAM Device by Microwave Irradiation Treatment

The bipolar resistive switching characteristics of resistive random access memory (ReRAM) based on HfO2 thin films have been demonstrated by using Ag/HfO2/Pt structured ReRAM device. MIcrowave irradiation (MWI) treatment at low temperature was employed in device fabrication with HfO2 thin films as a transition layer. Compared to the as-deposited Ag/HfO2/Pt device, highly improved uniformity cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016